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1. Review: Phase Transitions at T ≠ 0, Lattice Results for N=3, nf = 0 ’ 3
 
              (N = # colors, nf = # flavors) 

2. Bare Polyakov Loops, ∀ representations R:  factorization for N→∞

3. Renormalized Polyakov Loops

4. Numerical results from the lattice:

N=3, nf=0:  R = 3, 6, 8 (10?)

5. Effective (matrix!) model for renormalized loops
          



Review of Lattice Results: N=3, nf = 0, 2, 2+1, 3
nf = 0:   T_deconf ≈ 270 MeV

pressure small for T < T_d
like N→∞: p ~ 1 for T<T_d, p ~ N^2 for T>T_d   (Thorn, 81)

nf ≠ 0: as nf ↑, p_ideal ↑, T_chiral ↓
      BIG change: between nf = 0 and nf = 3, 
                p_ideal: 16 to 48.5 x ideal m=0 boson      Tc:   270 to 175 MeV!
Even the order changes: first for nf=0 to “crossover” for nf = 2+1

Bielefeld



Flavor Independence
p

pideal

(
T

Tc

)
≈ universal

Bielefeld

Perhaps: even for nf ≠ 0, “transition” dominated by gluons

At T ≠ 0: thermodynamics dominated by Polyakov loops
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Three colors, pure gauge: weakly first order?

Latent heat: vs 4/3 in bag model.  So?∆ε

εideal
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Deconfining Transition vs N: First order ∀ N ≥ 4
Lucini, Teper, Wenger ‘03: latent heat ~ N^2 for N= 3, 4, 6, 8

No data for 

Gross-Witten -  First order but: σ(T−
d ) = mDebye(T+

d ) = 0

σ(T−
d ) , mDebye(T+

d )

N

latent heat/N^2

Is N →∞ Gross-Witten?



Wilson Lines at T ≠ 0
Always: “pure” SU(N) gauge, no dynamical quarks (nf = 0)

Imaginary time formalism: τ : 0 → 1/T

LN (!x, τ) = P exp
(

ig

∫ τ

0
Aa

0(!x, τ ′)taNdτ ′
) Wilson line in fundamental representation: 

= propagator for “test quark”at x, moving up in (imaginary) time

D0GN = δ(τ) => GN = LNθ(τ)

LN = L†
N = propagator “test anti-quark” at x, moving back in time 

LN ε SU(N) : L†
NLN = 1N , det(LN ) = 1 (Mandelstam’s constraint)



Polyakov Loops
Wrap all the way around in τ: LN (!x, 1/T ) → LN

Polyakov loop = normalized loop = gauge invariant

!N =
1
N

tr LN

Confinement: test quarks don’t propagate

〈!N 〉 = 0 , T < Tdeconf

Deconfinement: test quarks propagate

〈!N 〉 = eiθ|〈!N 〉| #= 0 , T > Td

eiNθ = 1 : Spontaneous breaking of global Z(N) = center SU(N)

‘t Hooft ‘79, Svetitsky and Yaffe, ‘82



Adjoint Representation

tr Ladj = |tr LN |2 − 1

Adjoint rep. = “test meson”

Note: both coefficients ~ 1

Check: LN = 1N → tr Ladj = N2 − 1 = dimension of the rep.

Adjoint loop: divide by dim. of rep.

!adj =
1

N2 − 1
tr Ladj

At large N,

!adj = |!N |2 + O

(
1

N2

)
= factorization



Two-index representations
2-index rep.’s = “di-test quarks” = symmetric or anti-sym.

trL(N2±N)/2 =
1
2

(
(trLN )2 ± trL2

N

)
Di-quarks: two qks wrap once in time, or one qk wraps twice

Again: both coeff’s ~ 1.  Subscript = dimension of rep.’s = (N^2 ± N)/2

For arbitrary rep. R, if d_R = dimension of R, 

!R ≡ 1
dR

tr LR

For 2-index rep.’s ±, as N →∞, 

!± ∼ !2N + O

(
1
N

)
corr.’s 1/N, not 1/N^2: ∼ 1

N2
trL2

N



Representations, N=3

Label rep.’s by their dimension:

fundamental = 

adjoint = 8

symmetric 2-index = 6

special to N=3: anti-symmetric 2-index =  

3

3

“test baryon” = 10:
!10 =

1
10

(
tr L3 tr L2

3 + 1
)

Measured 3, 6, 8, & 10 on lattice



Loops at Infinite N
“Conjugate” rep.’s of Gross & Taylor ‘93: LN and LN = L†

N

If all test qks and test anti-qks wrap once and only once in time,

tr LR = #(tr LN )p+(tr L†
N )p− + . . .

Many other terms:

#′ tr L2
N (tr LN )p+−2(tr L†

N )p− + . . .

dimension R = dR ∼ Np++p−

As N → ∞, if #, #’... are all of order 1, first term dominates, and:

!R ∼ (!N )p+ (!N )p− + O

(
1
N

)

Normalization: if !N = !N = 1 , !R = 1 ∀ R



Factorization at Infinite N

Makeenko & Migdal ‘80: at N=∞, expectation values factorize:

〈!N 〉 = eiθ|〈!N 〉| #= 0 , T > Td , eiNθ = 1

In the deconfined phase, the fundamental loop condenses:

〈!R〉 = 〈!N 〉p+〈!N 〉p− + O
(
N−1

)
= eieRθ|〈!N 〉|p++p− + O(N−1)

Phase trivial: = Z(N) charge of R, defined modulo NeR = p+ − p−

Magnitude not trivial: highest powers of |〈!N 〉| win.

At infinite N, any loop order parameter for deconfinement, for all eR

For adjoint loop: Damgaard ‘87 + ...

N.B.: 〈!test baryon〉 = 〈!N 〉N−1〈tr L2
N/N〉



“Mass” renormalization for loops
Loop = propagator for infinitely massive test quark.

Still has mass renormalization, proportional to length of loop:

〈!R〉 = exp (−mR/T ) , mR ≡ fdiv
R /a

To 1-loop order in 3+1 dimensions:

a = lattice spacing.  m_R = 0 with dimensional regularization, but so what?

〈!R〉 − 1 ∼ −
(

1
T

)
CRg2

∫ 1/a d3k

k2
∼ −CRg2

aT

Divergences order by order in g^2.  Only power law divergence for
straight loops in 3+1 dim.’s. ; corrections ~aT.

In 3+1 dim.’s, loops with cusps do have logarithmic divergence.

In 2+1 dim.’s, straight loops also have log. div.’s. (cusps do not)



Renormalization of Wilson Lines
Gervais and Neveu ‘80; Polyakov ‘80; Dotsenko & Vergeles ‘80 ....

For irreducible representations R, renormalized Wilson line:

= renormalization constant for Wilson line

No anomalous dim. for Wilson line: no condition to fix

As R’s irreducible, different rep’s don’t mix under renormalization

For all local, composite operators, Z’s independent of  T

ZR

ZR at some scale

Wilson line = non-local composite operator: 

temperature dependent: from 1/T, and ZR mR

(numerically, from simulations)

L̃R = LR/ZR , ZR ≡ exp(−mR/T )



Renormalization of Polyakov Loops

Renormalized loop: !̃R = !R/ZR

Constraint for bare loop: |!R| ≤ 1

For renormalized loop: |!̃R| ≤ Z−1
R

as a → 0, no constraint on ren.’d loopIf mR > 0 ∀ T, ZR → 0

E.g.: as T →∞, ren’d loops approach 1 from above: (Gava & Jengo ‘81)

〈!̃R〉 − 1 ∼ −
(

1
T

)
CRg2

∫
d3k

k2 + m2
Debye

∼ (−)CRg2(−)(m2
Debye)

1/2

〈!̃R〉 ≈ exp
(

+
CR

N

(g2N)3/2

8π
√

3

)
Smooth large N limit: CR ≈ N

2
(p+ + p−) + O(1)



Why all representations?
Previously: concentrated on loops in fund. and adj. rep.’s, esp. with cusps.

At T ≠ 0, natural for loops, at a given point in space, to wrap around in

τ many times.  Most general gauge-invariant term:

G = (tr Lq+
1

R+
1
)n+

1 (tr Lq+
2

R+
2
)n+

2 . . . (tr (L†
R−1

)q−1 )n−1 . . .

G = ΣR cR !R

By group theory (the character expansion):

It is only consistent to renormalize this expression, linear in the loops.

If all m_R > 0, at a = 0: G = c1

Discovered numerically.  Irrelevant: physics is in the ren.’d loops.



Lattice Regularization of Polyakov Loops
Basic idea: compare two lattices.  Same temperature, different lattice spacing

If a << 1/T, ren’d quantities the same.  

N_t = # time steps = 1/(aT) changes between the two lattices: get Z_R

N_s = # spatial steps; keep N_t/N_s fixed to minimize finite volume effects

log (|〈!R〉|) = −fdiv
R Nt + f cont

R + f lat
R

1
Nt

+ . . .

fdiv
R

f cont
R

fdiv
R → ZR f cont

R → 〈!̃R〉 Numerically, 

Each f_R is computed at fixed T.  As such, there is nothing to adjust.

Explicit exponentiation of divergences to ~g^4 at a≠0: 

Curci, Menotti, & Paffuti, ‘85

f lat
R ≈ 0

N.B.: also finite volume corrections from zero modes; to be computed.



Lattice Results
Standard Wilson action, three colors, quenched.

Nt = 4, 6, 8,&10. Ns = 3Nt

Lattice coupling constant β = 6/g2

βd = coupling for deconfining transition: = βd(NT )!

Non-perturbative renormalization:

log(T/Td) = 1.7139(β − βd) + . . .

To get the same T/T_d @ different N_t, must compute at different β!

Calculate grid in β, interpolate to get the same T/T_d at different N_t

N.B. : Method same with dynamical quarks

Measured !3, !6, !8, & !10 (No signal for 10 for N_t > 4)



Bare |!3| vs Nt

|〈!3〉| ≡ exp(−m3/T )|〈!̃3〉|



Divergent mass mR(T )

One loop : mR ∼ CR

N.B. : all mR > 0 ∀ T

−4
3

= C3

−3 = C8

−10/3 = C6

OK for T > 1.5 T_d; 
Fails for Td → 1.5Td : m8 > m6



Renormalized Polyakov Loops

No signal of decuplet loop at N_t > 4; C_10 big, so bare loop small

!̃3 > !̃8 > !̃6



Results for Ren’d Polyakov Loops

But Z(3) charge e8 = 0 ⇒ 〈!̃8〉 $= 0 for T < Td.

Like large N: Greensite & Halpern ‘81, Damgaard ‘87...

(Similar to measuring adjoint string tension in confined phase)

T < Td : Z(3) symmetry ⇒ 〈!̃3〉 = 〈!̃6〉 = 0

Transition first order →ren.’d loops jump at T_d:

|〈!̃3〉| ≈ .4 ± .05 , T = T+
d

T > T_d:  Find ordering: 3 > 8 > 6.  But compute difference loops:

δ"̃6 ≡ 〈"̃6〉 − 〈"̃3〉2 ∼ O(1/N)

δ"̃8 ≡ 〈"̃8〉 − |〈"̃3〉|2 ∼ O(1/N2)

Numerically : 〈!̃8〉 = small #
1

N2
≈ 0 , T < Td



Bielefeld’s Renormalized Polyakov Loop
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Bielefeld’s Ren’d Polyakov Loop, N=2

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

L
re

n
(T

)

T/Tc

Digal, 
Fortunato, & 
Petreczky ‘02

|〈!̃2〉|

Transition second order: ⇒ |〈!̃2〉| = 0 @ T = T+
d



Difference Loops: Test of Factorization at N=3

|δ"̃8| ∼ O(1/N2) ≤ .12 ; |δ"̃6| ∼ O(1/N) ≤ .25

Details of spikes 
near T_d?

Sharp octet spike

Broad sextet spike



Bare Loops don’t exhibit Factorization

Bare octet 
difference 
loop/bare 
octet loop: 
violations 
of factor.
50% @ 
Nt =4
200% @ 
Nt = 10.



Mean Field Theory for Fundamental Loop
At large N, if fundamental loop condenses, factorization ⇒ all other loops

This is a mean field type relation; implies mean field for 〈!̃N 〉?
General effective lagrangian for renormalized loops:

Choose basic variables as Wilson lines, not Polykov loops:

Z =
∫

Π dLN (i) exp (−S(!R(i))) LN (i) ε SU(N)

Loops automatically have correct Z(N) charge, and satisfy factorization.

(i = lattice sites)

Effective action Z(N) symmetric.  Potential terms (starts with adjoint loop):

W = ΣiΣeR=0
R γR"R(i)

and next to nearest neighbor couplings:

SR = −(N2/3)Σi,n̂ΣeR+eR′=0
R,R′ βR,R′ Re "R(i)"R′(i + n̂) .

In mean field approximation, that’s it.  (By using character exp.)



Matrix Model (=Mean Field) for N=3
Simplest possible model: only β3,3∗ ≡ β3 "= 0 (Damgaard, ‘87)

Fit β3(T ) to get  〈!̃3〉(T )

Find β3(T ) linear in T b 3

Now compute loops in other representations using this β3(T )

〈!3〉 =
∫

dL !3 exp (18β3〈!3〉Re!3)
/∫

dL exp (18β3〈!3〉Re!3)



Matrix Model: N=3

Approximate agreement for 6 & 8.  Predicts 10 should be there.

10

Solid lines = matrix model.  Points = lattice data for renormalized loops.



Difference Loops for Matrix Model, N=3

d

Sextet diff. loop > octet, in agreement with 1/N exp.

But much broader, and much smaller, than the lattice data!



Matrix Model, N=∞, and Gross-Witten
Consider mean field, where  the only coupling is 

Gross & Witten ‘80, Kogut, Snow, & Stone ‘82, Green & Karsch ‘84

βN,N∗ ≡ β

At N=∞, mean field potential is non-analytic, given by two different potentials:

V−
mf = β(1 − β)"2 , " ≤ 1/(2β)

V+
mf = −2β" + β"2 +

1
2

log(2β") +
3
4

, " ≥ 1/(2β)

For fixed β, the potential is everywhere continuous, but its third 
derivative is not, at the point ! = 1/(2β)

β ≤ 1 : 〈"〉 = 0 = confined phase

β ≥ 1 : 〈"〉 $= 0 = deconfined phase

〈!〉 =
1
2

(
1 +

√
β − 1

β

)
:

〈!〉 =
1
2

, β = 1+

〈!〉 → 1 , β → ∞



Gross-Witten Transition: “Critical” First Order
Transition first order.  Order parameter jumps: 0 to 1/2.  Also, latent heat ≠ 0:

V−
mf = 0 , β ≤ 1 , V+

mf ≈ −(β − 1)/4 , β → 1+

But masses vanish, asymmetrically,  at the transition!

m2
− ≈ 2(1 − β) , β → 1− . m2

+ ≈ 4
√

β − 1 , β → 1+ .

If β~T, and the deconfining transition is Gross-Witten at N=∞, then
the string tension and the Debye mass vanish at T_d as:

σ(T ) ∼ (Td − T )1/2 , T → T−
d

mDebye(T ) ∼ (T − Td)1/4 , T → T+
d

Other terms?  Adjoint loop in potential just shifts β.
Higher terms in potential do seem to give ordinary 1st order transitions.

Lattice: N=3 close to Gross-Witten.  N>3?



To do

Two colors: matching critical region near T_d to mean field region about T_d?

Higher rep.’s, factorization at N=2?

Three colors: better measurements, esp. near T_d: 〈!̃3〉(T+
d ) . . .

For decuplet loop, use “improved” Wilson line? 

Limp =
∫

dΩ!n exp( ig

∫
(A0 + κa "E · "n)dτ)

∫
dΩ!n ∼ HTL’s

“Spikes” in sextet and octet loops? Fit to matrix model?

Four colors: is transition Gross-Witten?  Or is N=3 an accident?

With dynamical quarks:  method to determine ren.’d loop(s) identical 

Is 〈!̃R〉
(

T

Tc

)
with quarks

≈ 〈!̃R〉
(

T

Td

)
pure gauge

?


